Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids.
نویسندگان
چکیده
This report describes a method suitable for determining the depth of a wide variety of fluorescent molecules embedded in membranes. The method involves determination of the parallax in the apparent location of fluorophores detected when quenching by phospholipids spin-labeled at two different depths is compared. By use of straightforward algebraic expressions, the method allows calculation of depth in angstroms. Furthermore, the analysis can be extended to quenching by energy-transfer acceptors or brominated probes under appropriate conditions. Application of the method to quenching of 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD)-labeled lipids by spin-labeled lipids located at three different depths is demonstrated in model membranes. It is shown that the calculated depths of the NBD groups are self-consistent to the extent that they are the same no matter which two spin-labels have been used in a particular experiment. In addition, the calculated depth is independent of spin-label concentration in the membrane within +/- 1 A, ruling out major effects due to spin-label perturbation. The quenching experiments show that the location of the NBD group in head-group-labeled phosphatidylethanolamine is at the polar/hydrocarbon interface and that of an NBD label on the "tail" of cholesterol is deeply buried, as expected. Unexpectedly, NBD labels placed at the end of fatty acyl chains of phosphatidylcholines are also near the polar/hydrocarbon interface. Presumably, the polarity of the NBD group results in "looping" back to the surface of the NBD groups attached to flexible acyl chains.
منابع مشابه
Average membrane penetration depth of tryptophan residues of the nicotinic acetylcholine receptor by the parallax method.
The membrane penetration depths of tryptophan residues in the nicotinic acetylcholine receptor from Torpedo californica have been analyzed in reconstituted membranes containing purified receptor and defined lipids. Dioleoylphosphatidylcholine and three spin-labeled phosphatidylcholines with the nitroxide group at three different positions on the fatty acyl chain were used for reconstitution of ...
متن کاملLocalization of bilirubin in phospholipid bilayers by parallax analysis of fluorescence quenching.
It has been proposed that the neurotoxicity observed in severely jaundiced infants results from the binding of unconjugated bilirubin to nerve cell membranes. However, despite potentially important clinical ramifications, there remains significant controversy regarding the physical nature of bilirubin-membrane interactions. We used the technique of parallax analysis of fluorescence quenching (C...
متن کاملModulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function.
Melittin is a cationic hemolytic peptide isolated from the European honey bee, Apis mellifera. Since the association of the peptide in the membrane is linked with its physiological effects, a detailed understanding of the interaction of melittin with membranes is crucial. We have investigated the interaction of melittin with membranes of varying surface charge in the context of recent studies w...
متن کاملMolecular dynamics simulations of depth distribution of spin-labeled phospholipids within lipid bilayer.
Spin-labeled lipids are commonly used as fluorescence quenchers in studies of membrane penetration of dye-labeled proteins and peptides using depth-dependent quenching. Accurate calculations of depth of the fluorophore rely on the use of several spin labels placed in the membrane at various positions. The depth of the quenchers (spin probes) has to be determined independently; however, experime...
متن کاملAnalysis of protein and peptide penetration into membranes by depth-dependent fluorescence quenching: theoretical considerations.
Depth-dependent fluorescence quenching in membranes is playing an increasingly important role in the determination of the low resolution structure of membrane proteins. This paper presents a graphical way of visualizing membrane quenching caused by lipid-attached bromines or spin labels with the help of a depth-dependent fluorescence quenching profile. Two methods are presently available to ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 26 1 شماره
صفحات -
تاریخ انتشار 1987